

Feeling Differently Leads to Thinking and Reacting Differently

The Scientific Soundness of a Reversed Emotional Paradigm

For more than a century, dominant intellect-centered models (known as top-down, cognitive, or talk-therapy models) have operated on the assumption that **thinking differently** leads to **feeling differently**. This cognition-first paradigm treats altered thoughts, beliefs, or interpretations as the primary mechanism for emotional regulation and behavioural change.

While these approaches have produced valuable therapeutic tools and have demonstrated measurable efficacy in controlled environment settings, they rely on a paradigm, **which is a historically contingent framework, not a “stone-carved” biological law**. Recently, a vast and constantly growing body of research from neuroscience, affective science and psychophysiology has confirmed a paradigm much closer to biological reality: **feeling differently leads to thinking and reacting differently**.

This reversed paradigm places **(emotional) feelings** - the concrete, measurable physiological bodily sensations generated by the autonomic nervous system, endocrine activity, and sensorimotor processes - **at the root of emotional experience**. It draws directly from contemporary models of affective neuroscience, interoception, allostasis, predictive processing (active inference), and embodied cognition. Together, these frameworks provide a coherent, mechanistic account of how emotional change actually unfolds in the living nervous system.

Feelings as the Primary Substrate of Emotional Experience

Modern neuroscience has moved away from the classical view that emotions are discrete, hard-wired “mental objects” located in specific brain circuits that can be directly identified, labelled, challenged, or reframed. Instead, **emotions are constructed meanings that the brain**

generates from ongoing bodily states (Barrett, 2017). The well documented process mediating this construction is **interoception** - the brain's continuous, moment-to-moment monitoring of the body's internal condition (heart rate, respiration, lumps, knots, heaviness, tension, stiffness, pain, visceral state, temperature, etc.).

Signals from the viscera, cardiovascular system, and musculoskeletal tissues reach the insula, anterior cingulate cortex, and brainstem nuclei before any conscious interpretation occurs (Craig, 2002; Seth & Critchley, 2013). In states of emotional distress, these **bottom-up interoceptive signals dominate neural processing**. They shape perception, narrow attention, bias memory retrieval, and set the organism's action readiness long before higher-order cognition can intervene. **Cognition does not initiate or lead the emotional cascade; it follows and attempts to make sense of it.**

This perspective is powerfully supported by the **theory of constructed emotion** (Barrett, 2017), which posits that the brain uses past experience (organised as concepts) and current interoceptive predictions to assign meaning to bodily sensations in context. **What we subjectively experience as “anger,” “anxiety,” or “grief” is the brain’s best guess about what those sensations mean given the situation. Change the bodily sensations, and the constructed emotion changes - often without any need for deliberate cognitive reframing.**

Antonio Damasio’s somatic marker hypothesis provides an earlier and complementary foundation. Somatic markers are bodily feelings (visceral and musculoskeletal) that become associated with specific outcomes through learning. These markers act as rapid, non-conscious biasing signals that guide decision-making and behaviour, especially in uncertain or emotionally charged situations. Patients with damage to the ventromedial prefrontal cortex lose access to these markers and, despite intact intellect, make disastrous real-life decisions (Damasio, 1994; Damasio & Carvalho, 2013). **The body, not abstract reasoning, provides the motivational and directional force.**

Why Cognition-Focused Change Is Often Limited

Cognitive approaches implicitly assume robust top-down control: assume that thoughts can override or reshape bodily states at will - **which seems true in situations of serenity or low emotional intensity**. However, clinical evidence shows that under high emotional intensity, top-down regulation is fragile, metabolically expensive, and easily disrupted by the very states it is meant to correct.

Under high emotional arousal, the prefrontal cortex (PFC) is down-regulated (through a phenomenon described as the "amygdala hijack.") while subcortical and brainstem systems gain dominance. **Acute stress impairs working memory, sustained attention, cognitive flexibility, and inhibitory control** - the very executive functions required for successful reappraisal (Raio et al., 2013; McRae & Gross, 2020). Meta-analytic reviews confirm that cognitive reappraisal is significantly less effective when emotional intensity is high or when the individual is already in a stressed or depleted state (Sheppes & Meiran, 2007; McRae & Gross, 2020). **In such conditions, new thoughts may be intellectually accepted but remain physiologically inert; awareness arises without somatic relief, and behavioural change is fragile or short-lived.**

Cognitive models also struggle to explain the speed and automaticity of memory-triggered visceral responses. An abstract belief cannot directly produce tachycardia, gut constriction, or motor system freezing; these require pre-existing physiological pathways that precede conscious thought. **The brain does not generate emotions from cognition downward; it generates them from interoceptive and autonomic states upward, then constructs meaning around them.**

The Reversed Paradigm: Change the Feeling, and the System Reorganises

The reversed paradigm resolves these contradictions by targeting emotional experience at its physiological source. When bodily feelings

are directly accessed, regulated, and allowed to resolve - **through a process of subtraction (uprooting) rather than addition or reframing, - a reliable neurophysiological sequence unfolds:**

- Autonomic nervous system patterns shift from sympathetic dominance toward parasympathetic regulation - physiology calms.
- Interoceptive prediction errors decrease; the brain's internal model of the body updates.
- Bottom-up threat and distress signalling to the cortex diminishes.
- Cognitive activity spontaneously reorganises without effortful reframing.
- Behavioural readiness and action tendencies change naturally.
- Emotional meaning transforms because the body no longer supplies the physiological substrate for the old narrative.

This is not a psychological trick or symbolic intervention. **It is a neurophysiological process governed by the principles of allostasis** (predictive regulation of the body's internal milieu before homeostasis is threatened), **predictive processing** (active inference), and **interoceptive inference** (Barrett & Simmons, 2015; Kleckner et al., 2017; Petzschner et al., 2021). The brain is constantly generating predictions about bodily needs and acting to fulfil them. When unresolved emotional residues keep the body in a dysregulated allostatic state, the brain's predictions remain biased toward threat or distress. **Releasing the somatic pattern updates the predictions, allowing the entire system - body, emotion, thought, and behaviour - to reorganise.**

This Is a Paradigm Shift, Not Merely a New Technique

This model constitutes a genuine paradigm shift. Emotional suffering is reframed not as a cognitive error to be corrected from above (cognitively, by the conscious mind), but as a physiological state to be resolved at its source. Regulation is understood as primarily bottom-up, with cognition emerging as a natural outcome rather than the driver.

By aligning therapeutic change with the nervous system's own operating principles, the reversed paradigm explains several otherwise puzzling clinical observations: why deep, rapid, and lasting relief can occur without prolonged cognitive work; why relief frequently precedes insight; and why clarity, meaning, and behavioural coherence often emerge only after the body has settled.

Conclusion

The assertion that **feeling differently leads to thinking and reacting differently** is not a philosophical preference but a biologically grounded claim supported by affective neuroscience, interoception research, allostasis, predictive processing, and embodied cognition. **By recognising bodily feelings as the roots of emotional experience and interoceptive processes as the primary drivers of regulation, this paradigm offers the conceptual coherence of a more accurate, more human, and more effective framework for emotional change.**

In this view, emotional healing is not imposed from above through willpower or insight; it unfolds naturally from within. When the feelings (bodily conditions) that sustain distress are resolved, the entire system reorganises. Thoughts follow. Behaviour adapts. Meaning shifts.

.....

Resources supporting the above claims:

1. **Barrett, L. F. (2017).** The theory of constructed emotion: An active inference account of interoception and categorization. *Social Cognitive and Affective Neuroscience*, 12(1), 1–23. <https://doi.org/10.1093/scan/nsw154>
2. **Damasio, A., & Carvalho, G. B. (2013).** The nature of feelings: Evolutionary and neurobiological origins. *Nature Reviews Neuroscience*, 14(2), 143–152. <https://doi.org/10.1038/nrn3403>
3. **Craig, A. D. (2002).** How do you feel? Interoception: The sense of the physiological condition of the body. *Nature Reviews Neuroscience*, 3(8), 655–666. <https://doi.org/10.1038/nrn894>

4. **Damasio, A. R. (1994).** *Descartes' error: Emotion, reason, and the human brain.* Putnam - pdf.
5. **Barrett, L. F., & Simmons, W. K. (2015).** Interoceptive predictions in the brain. *Nature Reviews Neuroscience*, 16(7), 419–429. <https://doi.org/10.1038/nrn3950>
6. **Hoemann, K. & Barrett, L.F. (2019).** Concepts dissolve artificial boundaries in the study of emotion and cognition. <https://affective-science.org/pubs/2018/hoemann-barrett-cognition-emotion-2018.pdf>
7. **Kleckner, I. R., Zhang, J., Touroutoglou, A., Chanes, L., Xia, C., Simmons, W. K., Quigley, K. S., Dickerson, B. C., & Barrett, L. F. (2017).** Evidence for a large-scale brain system supporting allostasis and interoception. <https://doi.org/10.1038/s41562-017-0069>
8. **McRae, K., & Gross, J. J. (2020).** Emotion regulation. *Emotion*, 20(1), 1–9. <https://doi.org/10.1037/emo0000703>
9. **Quigley, K.S. et al. (2024).** Interoceptive Mechanisms and Emotional Processing (Annual Review of Psychology). <https://www.annualreviews.org/doi/pdf/10.1146/annurev-psych-020924-125202>
10. **Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012).** Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. *Annals of the New York Academy of Sciences*, 1251(1), E1–E24. <https://doi.org/10.1111/j.1749-6632.2012.06751.x>
11. **Petzschner, F. H., Garfinkel, S. N., Paulus, M. P., Koch, C., & Khalsa, S. S. (2021).** Computational models of interoception and body regulation. *Trends in Neurosciences*, 63–76. <https://doi.org/10.1016/j.tins.2020.09.012>
12. **Raio, C. M., Orededoru, T. A., Palazzolo, L., Shurick, A. A., & Phelps, E. A. (2013).** Cognitive emotion regulation fails under stress. *Proceedings of the National Academy of Sciences*: <https://doi.org/10.1073/pnas.1301918110>
13. **Seth, A.K. & Critchley, H.D. (2013).** Interoception and emotion (key review). https://www.researchgate.net/publication/316413451_
14. **Robinson, E. Watkins, & E. Harmon-Jones** (Eds.), *Handbook of cognition and emotion* (pp. 272–292). Guilford Press.
15. **Sheppes, G., & Meiran, N. (2007).** On the dynamics of online regulation of sadness using distraction and cognitive reappraisal. *Personality and Social Psychology Bulletin*: <https://doi.org/10.1177/0146167207305537>
16. **Zamarriola, G. et al. (2020).** A Systematic Review of Associations Between Interoception, Vagal Tone, and Emotional Regulation. <https://pmc.ncbi.nlm.nih.gov/articles/PMC7419655/>

17. **Chen, W.G. et al. (2021).** Functions of Interoception: From Energy Regulation to Experience of the Self.
<https://PMC7780233/>
18. **Interoception, emotion awareness, and affective disorders.**
<https://PMC11020380/>
19. **Interoception from homeostasis to self.**
<https://PMC7780233/>
20. **Interoception and emotion regulation**
[https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2020.01792/full –](https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2020.01792/full)